INTEGRATED TECHNICAL EDUCATION CLUSTER
AT ALAMEERIA

40)
(o
(o
40)
o)
L]
-
40)
=
-
<
©

€-626-A
Real-Time Embedded Systems (RTES)

Lecture #6
UART & Time Analysis for RTES

d SPRING 2015

Instructor:
Dr. Ahmad El-Banna

Agenda

© Ahma& ELBanna

. Need for Timing Analysis

. Software Behavior ‘
. Hardware Timing ‘
. UART Module \

(o)
—
)
N
o0
=
~
Q
)
O
H+
Q
Q
—
7]
=
a2

euveC]-_| peuyy/ © G10Z 2unds - 9#09T ‘SHILY

TIME ANALYSIS

Intro.

A real-time system must react within precise time constraints,
related to events in its environment and the system it controls.

This means that the correct behavior of a real-time system depends
not only on the result of the computation but also on the time at
which the result is produced.

The size and the complexity of the software in real-time system are
increasing.

* This makes it hard, or even impossible, to perform exhaustive testing of
the execution time.

The hardware used in real-time systems is also becoming more
complex, including advanced computer architecture features such

as caches, pipelines, branch prediction, and out-of-order execution.

* These features increase the speed of execution on average,
* but also makes the timing behavior much harder to predict, since the

variation in execution time between fortuitous and worst cases increase.

© Ahmaé ELBanna

[@)
—{
@)
Q|
o0
E
-
Q
99
O
H
QO
Q
—_
)
=
(=

Execution time analysis

* Variations in the execution time occur due to variations in

© Ahma& ELBanna

* input data,
* the characteristics of the software, the processor and
* the computer system in which the program is executed.

* Execution Times:

* The worst-case execution time (WCET) of a program is defined as the
longest execution time that will ever be observed when the program is
run on its target hardware.

* The best-case execution time (BCET) is defined as the shortest time ever
observed.

* The average-case execution time (ACET) lies somewhere in-between the
WCET and the BCET, and depends on the execution time distribution of
the program.

[@)
—{
@)
Q|
o0
E
-
Q
99
O
H
QO
Q
—_
)
=
(=

Need for timing analysis

* Reliable timing estimates are important when designing and
verifying many type of embedded systems and real-time systems.

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©)

* This is especially true, when the system is used to control safe
critical products such as vehicles, aircraft, military equipment and

@)

. . —

industrial plants. =

N

o0

=

~

Q,

95

No Soft Hard -

real-time < | real-time | > real-time :ﬁ

Imlllllmlll :

Q

—

75

(IR

System User Internet Tele Vehicle Aircraft E
simulation interface video communication control control

timing criticality

Example distribution of
execution time

* A WCET analysis derives an estimate of the WCET for a program or
part of the program.

* To guarantee that no deadline are missed, a WCET estimate must be
safe (or conservative), i.e., a value greater than or equal to the

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©

{o)
WCET. =
N
&0
nh S
@D o
£ « safe approximation of timing > E:
% possible execution times » <)
5 ’<— measured execution times —— :Cﬂ’é
3 i The WCET must o
=| safe minimal be found or maximal safe —
| lower BCET measured upper bounded | measured WCET upper %)
bound time bound =
e
T T T———T | > 7
o "time

Software Behavior

* Embedded software comes in many different flavors, using many different
languages.

© Ahma& ELBanna

* Most timing-critical real-time software is written in C or Ada, with some
assembly language.

* The software behavior contributes a large part of the execution time
variability of a program, often dominating the effect of local hardware
timing variability.

* even small codes might exhibit variable and interesting behavior.

(o)
—
)
N
&0
=
=
Q
)
O
H+
Q
Q
—
7]
=
a2

1. S/ The main function 15. // Convert read value

2. vold task Ni{wvoid) | 16. int convert {int wval) |

3. // Bead wvalues from sensors 17. int 1 = 0;

4. int wvall = SENSORL; 18. int 3 = 0;

5. int val2 = SEMNSORZ; 19. total = 0;

A, 4 To hold caloulated values 20. while{i <= wal) |

7. int resl = Q; 21. if(j < 5)

8. int resZ = 0; 22. J++;

o, /f Call twice with different wvalues 23, if(j » wal) break;
10. resl = convert(wvall); 24, total = total + 3 - Z;
11. res? = convert(val2); 25, 14

12, /4 Set actuator to calculated sum 26. }

13, ACTUATOR = resl + res?; 27. return total;

14. 28 }

one branch takes longer than the other branch to execute !

Hardware Timing

* The main complexity in hardware timing analysis is the
behavior of the processor itself, along with its memory
system.

© Ahmad ELBanna

* Other components of a computer system like I/O, networks,
sensors, and actuators have less impact on the program
timing.

* Traditional 8-bit and 16-bit processors typically feature simple
architectures where instructions have fixed execution times,
and each instruction has minimal effect on the timing of other
instructions.

[@)
—{
@)
Q|
o0
E
-
Q
99
O
H
QO
Q
—_
)
=
(=

* Somewhat more complex 32-bit processors are designed for
cost-sensitive applications.

[ssues affect the time in Hardware

* Memory Access Times
* e.g. RAM technology
* Long Timing Effects
* Number of pipelining, one instruction waits the other to finish
* Caches
* Cache Structures/Levels
* Branch Prediction
* Predict which branch will be taken before being resolved in the
processor pipelining
* Multicore and Multiprocessor Systems
* can both benefit and hinder timing analysis!
* Interface between tasks and shared resources or memory
* Custom Accelerator Hardware
* ASIC, SoC or FPGA

© Ahma& ELBanna

[@)
—{
@)
Q|
o0
=
-
Q
99
O
H
QO
Q
—_
72}
=
(=

euveC]-_| peuyy/ © G10Z 2unds - 9#09T ‘SHILY

UART

Serial Communication

* Asynchronous

© Ahma& E_Lbanna

* No need for clock
* Low speed
e Covered in this lecture

* Synchronous
* Need a clock
* High speed
* Covered later

[@)
—{
@)
Q|
o0
=
—
Q
99
O
H
QO
Q
—_
72}
=
(=

Asynchronous principles

* Solves the disadvantages of the synchronous comm. which are:

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©)

* An extra line is needed to go to every data node.

* The bandwidth needed for the clock is always twice the bandwidth
needed for the data; therefore, it is demands of the clock which limit the

(@]
overall data rate. —
@)
* Over long distances, clock and data themselves could lose ?0
synchronisation. =
-
a,
N
Start :Cﬂ’é
St
bit ot S
First Last —
v v v R >
T [X X T): / T
Sla‘f‘ . Extra ‘parity’ Earliest possible
synchronisetion bit could be new Start bit

inserted here

Synchronizing serial data — without
an incoming clock

* The receiver runs an internal clock whose frequency is an exact multiple
of the expected bit rate.

* The receiver monitors the state of the incoming data on the serial
receive line.

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©)

* When a Start bit is detected, a counter begins to count clock cycles e.g. -
16 cycles until the midpoint of the anticipated Start bit is reached. S

* The clock counter counts a further 16 cycles, to the middle of the first 0
data bit, and so on until the Stop bit. S,
Midpoint of L

Midpoint of first Data bit o)

Start bit It

First 8

idle state l Lzl \ —

l ‘ Start bit l é

=4

Incoming : l 5
data : :

Receiver Clock,

running at multiple of ”” ”” |||||| I”“ “”” |||||| |I||||

expected bit rate

The 16F87XA Addressable Universal Synchronous
Asynchronous Receiver Transmitter (USART)

* The USART can be configured as synchronous master, synchronous
slave or in asynchronous mode.

40)
(o
(o
40)
o)
L
-
]
=
-
<C
©)

* In the asynchronous mode, it is full duplex — that is, it can transmit
and receive at the same time.

* Thus, it has both a receive shift register and a transmit shift register, g
which can operate simultaneously. 20
* Both sections share the same baud rate generator and have the g
same data format. 2
* Operation of the USART is controlled by two registers, :'§
* TXSTA and >
« RCSTA =

* The port is enabled by the SPEN bit of RCSTA, and selection of
synchronous or asynchronous modes is by the SYNC bit of the TXSTA
register.

The transmit status and control register;
TXSTA (address 98 H)

R/W-0 R/W-0 R/W-0 R/W-0 u-0 R/W-0 R-1 R/W-0
| csRc | ™9 | ™EN [syne | — | BRGH | TRMT | TxeD |
bit 7 bit 0

© Ahma& E_Lbanna

bit 7 CSRC: Clock Source Select bit
Asynchronous mode:
Don't care.
Synchronous mode:
1 = Master mode (clock generated internally from BRG)
0 = Slave mode (clock from external source)

bit & TX9: 9-bit Transmit Enable bit

1 = Selects 9-bit transmission
0 = Selects 8-bit transmission

bit 5 TXEN: Transmit Enable bit
1 = Transmit enabled
0 = Transmit disabled
Note: SREN/CREN overrides TXEN in Sync mode.

bit 4 SYNC: USART Mode Select bit

1 = Synchronous mode
0 = Asynchronous mode

bit 3 Unimplemented: Read as ‘0’
bit 2 BRGH: High Baud Rate Select bit

[@)
—{
@)
Q|
o0
E
-
Q
99
O
H
QO
Q
—_
72}
=
(=

1 = High speed
0 = Low speed
Synchronous mode:
Unused in this mode.
bit 1 TRMT: Transmit Shift Register Status bit
1 =TSR empty
0 =TSR full
bit 0 TX9D: 9th bit of Transmit Data, can be Parity bit

=
(9))]
—

The RCSTA register (address 18H),
receive status and control register

© Ahma& E_Lbanna

RWO RW-0 RWO RWO RWO0 RO R-0 Rx
[sPEN [Rxe | sren | creEN [ADDEN [FERR | OERR | RxsD |
bit 7 bit 0
bit 7 SPEN: Serial Port Enable bit

1 = Serial port enabled (configures RC7/RX/DT and RC&/TX/CK pins as serial port pins)
0 = Serial port disabled
bit 6 RX9: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception
bit 5 SREN: Single Receive Enable bit

Don't care.
1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.
h =Sl
Don't care.
bit 4 CREN: Continuous Receive Enable bit

1 = Enables continuous receive
0 = Disables continuous receive

Synchronous mode:

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)

0 = Disables continuous receive
bit 3 ADDEN: Address Detect Enable bit

-bit (RX9 =1}):
1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8>
is set

0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit
bit2 FERR: Framing Error bit

1 = Framing error (can be updated by reading RCREG register and receive next valid byte)

0 = No framing error
bit 1 OERR: Overrun Error bit

1 = Overrun error (can be cleared by clearing bit CREN)

0 = No overrun error

bit 0 RX9D: Sth bit of Received Data (can be parity bit but must be calculated by user firmware)

[@)
—{
@)
Q|
o0
E
-
Q
99
O
H
QO
Q
—_
72}
=
(=

=
~

The USART baud rate generator

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©

F Data Bus
TXIF = TXREG Register
TXIE # B
L LSb .
! ! Pin Buffer _
|8 s e 0| =={ and Control -
. T TSR Register_ _ ______ ! , o
Intefrupt RCE/MTX/CK pin —
S
TXEM | Baud Rate CLK .I
Transmit | . | TRMT spen || Serial Port _%0
Enable ' ‘ 9 bit Transmit Enable a
: SPBRG : Enable %)
Baud Rate Generafor T Transmit Shift ©
9D | 6th data bit S S +
Q
—
i A
STy _ osc
For BRGH =10 Baud rate = 61 ([SPBRG] n l) E
For BRGH = 1 Baud rate = Jose
16([SPBRG] + 1) 13 J
Synchronous

f;)SC
4([SPBRG] + 1)

BRGH = don’t care Baud rate =

The USART asynchronous receiver

© Ahma& E_Lbanna

A8

Continuous Owverrun Error — Framing Error
Receive Enable
.- x64 Baud Rate CLK _ . OERR FERR
: ; CREN
Fosc SPBRG ' R 1 _________ [______
' ; l +g:l MSb RSR Register LSb 4
" Baud Rate Generator +16 o Stop [(8)| 7| eee |1|0]| Sart || e
! " —{
RC7/RX/DT { <
Pin Buffer Data
| and Control Recovery RXS %0
=~
9 Bit Receive Q,
Enable ¥ C/{
SPEN ¥ |RX9D| RCREG Register de)
oth Received FIFO Nun
Serial Port Data Bit o
Enable —
75
=
=4

Interrupt C RCIF Data Bus
RCIE

1)

Sample Project

* Send the word “ Good Morning ! “ to the PC

* Receive its reply by flashing a green LED if “OK” is received
* Otherwise, flash a red LED.

© Ahma& E_Lbanna

[@)
—{
@)
Q|
o0
E
—
Q
99
O
H
QO
Q
—_
72}
=
(=

* For more details, refer to:

© Ahma& E_Lbanna

* Chapter 10, T. Wilmishurst, Designing Embedded Systems with
PIC Microcontrollers, 2010.

* A. Ermedahl, Execution Time Analysis for Embedded Real-Time
Systems.

* The lecture is available online at:
* http://bu.edu.eg/staff/ahmad.elbanna-courses/12134

* For inquires, send to:

e ahmad.elbanna@feng.bu.edu.eg

[@)
—{
@)
Q|
o0
E
-
Q
99
O
H
QO
Q
—_
72}
=
(=

http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
mailto:ahmad.elbanna@feng.bu.edu.eg

